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Abstract. Risk literacy requires basic elements of numeracy. It requires some
ease with basics of probability theory. Yet, it is these basics which often cause
difficulties, in particular when they are presented using abstract formalisms. This
paper reviews a systematic framework for representations of information that
eliminate difficulties and frequent fallacies in dealing with probabilities. A large
subfamily of these representations is inspired by Otto Neurath’s isotypes and
consists of so-called icon arrays. Another subfamily contains trees, which are
hierarchical noncyclic graphs. Yet another subfamily consists of double trees that
foster intuitions for Bayesian inferences. An interactive webpage is presented that
can be used by both adults and children, with buttons and sliders to set parameters
and with 3 different levels of statistical literacy. Furthermore, trees are examined
as structures for combining multiple cues in order to classify situations under risk
and make decisions. Plugins for constructing such trees and for reckoning with
risks are presented and discussed.

1 Introduction

Humans have dealt with risks since the beginnings of human history. Yet the rigorous,
formal treatment of risks is amodern achievement. Thismathematical treatment is essen-
tially based on probability theory and was cemented during the early nineteenth century
with the work of De Morgan on probability and life contingencies (1838). It attained
full formal rigor only during the first decades of the last century, being embedded in
the edifice of Mathematics. This edifice, solidly built on axioms and theorems proven
by means of inferences based on classical logic, can appear daunting to untrained lay
people. In fact, precisely this formal rigor hinders the natural approach to „doing” math-
ematics based on fruitful intuitions. The tension between rigorous, formal mathematics
and mathematical intuitions remains a hot topic of mathematics education, especially at
school level: what should be taught in school and how should it be taught so that school
students acquire mathematical competencies beyond procedural techniques? The ten-
sion between the axiomatic treatment of Kolmogorov and the intuitive, quasi- empirical
treatment of Pascal and Laplace, basedmainly on numerical proportions, is so strong that
it led Leo Breiman (1968) to state that “probability theory is condemned to having a right
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and a left hand—the right hand being the measure-theoretical approach that guarantees
mathematical rigor, and the left hand meaning ‘intuitive probabilistic thinking’” (p. 7).
The modern concept of a probability is defined by means of a real-valued function on a
sigma algebra of subsets of a set that satisfies certain axioms. The enthusiasm for this
definition in the first decades of the 20th century was enormous. It proved, once again,
that set theory had become, as David Hilbert put it, “A paradise, from which no-one will
throw us out.” (Hilbert 1926).

In the sixties, mathematicians both in Europe and in the United States prompted the
introduction of set theory in schools. This enthusiasm was enhanced by the possibility
of representing sets by means of Venn diagrams. This representation of sets was at hand
since John Venn had introduced his diagrams in the nineteenth century (Venn 1880).
Venn diagrams represent sets, their intersections and their unions by circles or ovals
that may overlap or be nested within each other. In the sixties and seventies, these
Venn diagrams were introduced as representations of sets in primary and secondary
schools in most European countries and in several other countries around the world.
To the dismay of mathematicians, school students, their parents and even many of their
teachers were irritated and frustrated, to say the least. We cite here a typical example:
Stephanie Krug, who went to school in Baden Württemberg back in the seventies and
whom we interviewed, recalls her reluctance to draw triangles and circles in different
colors placed in those Venn diagrams (Fig. 1). “What for?” she asked.

Fig. 1. From a notebook of Stephanie Krug in 1974

In fact, the reaction to set theory and Venn diagrams in schools represents one of
those rare victories of teachers united with parents in many countries of the world. In
Germany, the protests from teachers and parents were so strong that set theory was
banned from primary school, and with it the Venn diagrams that had confused everyone.

Convinced that probability theory requires both set theory and the functions defined
on sets, German mathematics educators were reluctant to introduce probabilities earlier
than in advanced secondary school. This tendency changed somewhat during the nineties,
and elements of probability theory and statistics were covered in short chapters in school
math books. Sadly, these chapters were often left to be treated at the end of school
years, with little emphasis and little enthusiasm. In this article, we focus on that realm of
elementary stochastics, which examines the possible relationships between two bivariate
variables and is essentially based on proportional reasoning. We posit that proportional
reasoning, supported by dynamic visualizations of “natural frequencies” (see below for
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a definition of this term), can provide effective intuitions of probabilistic situations and
risk literacy. We exhibit digital plugins for working with proportions related to risks,
that have successfully been used at different institutions.

2 Proportions, Frequencies, and Probabilities

With the results of cognitive psychologists during the second half of the twentieth century
on people’s dealing with probabilistic inferences, things became even worse for the
acceptance of probabilities in math education. Experiments by psychologists such as
Amos Tversky and Daniel Kahneman discredited Breiman’s left (intuitive) hand. Using
many examples, Kahneman and Tversky (e.g., 1974) had shown that people can have
enormous difficulties in dealing with various tasks that involved probability judgments.
Note that in these tasks the necessary information was typically expressed in terms
of probabilities. Likewise, they had shown that people have a hard time to correctly
compare the probability of compound events with the probabilities of the constituents
of these compounds. In the opinion of these two psychologists and many others who
followed their line of research, people are unable to handle probabilities.More generally,
the conclusion of these authors’ heuristics-and-biases program was that people are not
“rational”.

This pessimistic view of human thinking did not go unchallenged. It provoked new
empiricalwork aswell as theoretical andmethodological discussions,whichwere driven,
to a considerable extent, byGerdGigerenzer and his students. Inmany experiments, these
authors have demonstrated that so-called cognitive illusions can be made to disappear
(e.g., Gigerenzer 1991, Gigerenzer, Hertwig, Hoffrage, & Sedlmeier 2008). They have
argued that sometimes the “wrong” statistical (or logical) norm has been applied or
that the stimulus materials used in experiments have not been representative of partici-
pants’ natural environment to which they have adapted. Most important for the present
article were, however, their argument and their demonstrations that information needs
representation and that performance in judgment tasks can improve tremendously when
information is presented in terms of frequencies instead of probabilities. Some of the
studies by Gigerenzer and his students then led to a complete redesign of Venn dia-
grams, which made a big difference for children and adults. Ovals with small abstract
figures such as triangles and squares are not helpful. What helps, however, are grids with
representations of individuals, items of all sorts, mythical creatures, or animals that are
easy to sort and count. It is easy to choose content that is appealing and motivating even
for young children. With these representations, elementary probabilistic thinking and
risk literacy boils down to reckoning with proportions, comparing them, and drawing
conclusions from comparisons.

3 Classifications in Risky Situations

The main scope of this work is to address how elementary proportions are at the basis of
risk literacy. Let us recall that one of themain theorems of probability theorem states that
in any aleatory experiment which can be repeated „ad infinitum”, the relative frequencies
converge to the real probability. This result basically implies that relative frequencies,
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which are proportions of successful results divided by the total number of results, are
the concrete, palpable approximations of probabilities. Mathematics educators often
insist that working well with these approximations is a sufficient basis for risk literacy.
Decisions in risky situations often depend on classifications of situations, which, on
their turn, depend on the features or cues that characterize them. For instance, a doctor
classifies a patient as “in high risk of heart attack” based on certain features extracted
from the electrocardiogram of the patient and from behavioral cues, like the intake of
certain medicines or chest pain. Once the patient is classified as “high risk” he/she is
sent to the coronary care unit. If not, that is if he/she is not “at high risk” then the patient
can be assigned a regular nursery bed. Medical situations are one of the great application
fields in decision making, where risk literacy becomes fundamental.

Observe that in most medical situations, one feature alone is not enough for making
a good decision. The immense progress in medicine and epidemiology is precisely the
discovery of tests, symptoms, and behavioral traits that can fully characterize a patient’s
risk situation, so that accurate decisions tailored to the specific risk can be made.

The Covid pandemic that recently shocked the world is a wellknown example of
medical decision making under high risk. Which are the relevant cues and how can their
reliability be measured? We had some direct experience because we, at least one of the
authors, had to deal with the disease in the region of the German city of Tübingen. It was
interesting to consult doctors who worked together with the main Hospital of Tübingen
and capture their simple strategy for decision making in case of symptomatic patients.
Basically, the decision tree of doctors during the months of April and May 2020 looked
like this:

Fig. 2. A frequently adopted classification and decision tree for symptomatic patients at the
beginning of the Covid pandemic
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Observe that a positive test did not lead to immediate hospitalization. Breathing
problems led to hospitalization, but, in its absence, other cues were checked. The order
of those other cues was important here. In general, research has shown that a robust and
accurate tree similar to the one shown in Fig. 2 can be constructed by ordering the cues
according to their validity, that is, the proportion of correct classifications. However,
the validity of the cues considered at the beginning of the Covid pandemic was not
yet established by large empirical studies, so that the situation was characterized by
uncertainty rather than risk (Mousavi & Gigerenzer 2014). Nevertheless, there were
some preliminary numbers and estimates that could be used to construct such trees and
so we witnessed the development of these decision trees as an ad hoc process, in the
sense that “the science had to be developed along the way” without a large base of prior
knowledge.

4 Scaffolding Risk Literacy

Being able to construct tools, like trees, for decisions under risk, is one component of
risk literacy.Which are other components? In what follows, we briefly present our (Mar-
tignon&Hoffrage 2019) four-stagemodel of risk literacy. It consists of four components
(Fig. 3):

I) Detecting risk and uncertainty
II) Analyzing and representing uncertain or risky situations
III) Comparing alternatives and dealing with trade-offs
IV) Making decisions and acting

Fig. 3. Scaffolding Risk Literacy by means of four components (adapted from Martignon &
Hoffrage 2019).

Of these components the first one – detecting and identifying risks and uncertainties
in ordinary life – requires sufficient psychological disposition, either innate or acquired
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during childhood and youth. The second component – analysing and modelling risks –
is not only psychological but, above all, adaptive. It requires basic skills but also basic
education, especially in these times when we are confronted with a sheer amount of
quantitative information on a daily basis – information that requires and provokes the
acquisition of basic numeracy skills. The availability of information goes hand in hand
with the availability of digital media and its tools, including those that can improve risk
literacy. Concepts of risk and related tools need to be understood and trained in order to
improve basic numeracy skills and risk literacy. To illustrate: if a person’s Covid-19 test
was negative and she was told that the false negative rate of the test was, say, 2%: is she
now at risk? And what if the test was positive? Answers to this type of question became
crucial to citizens all over the world during 2020. But it is, of course, not just the Covid
19 pandemic which prompts our need to understand the validity of features and how it
can be computed. For instance, when a woman is told that regular screening reduces the
risk of breast cancer by 50%, what should she do? Or if we are told that eating bacon
sandwiches increases our risk of getting bowel cancer by 20%, how seriously should we
try to avoid bacon sandwiches? One message of this paper is that there are simple tools
and principles for analysing and modelling risks and uncertainties, so that these become
amenable to being assessed and compared in terms of elementary proportions that can
provide the basis for sound decisions, even of young students. The third component of
risk literacy – namely comparing alternatives and dealing with trade-offs – builds on the
first two, but goes beyond them and therefore represents an additional skill. This paper
is concerned with the second, third and fourth components of risk literacy.

5 Proportional Thinking and Logical Principles at the Foundation
of Classification

A child of 10 years can deal with the following situation: Consider 25 pupils in a
classroom, some are boys, and some are girls. Some have short hair. Some are boys and
have short hair. Some wear skirts, some wear trousers. Some wear skirts and have short
hair. Would one bet that a child of our class who wears a skirt is a girl? Most probably
we would. But would we bet that a child with short hair is a boy? Probably not! Features
or characteristics, like „short hair” or „wears a skirt”, are the essence of classification
and inference in everyday life and we should early learn to deal with them. We extract
features, items, and concepts out of situations with ease, we are able to classify based
on features and tend to define situations, items, and concepts based on features.

In this example, three bi-variate variables were mentioned: Gender (boy/girl), Hair
length (short/long), and Dress (trousers/skirt). The variables (here, three) and the indi-
vidual objects (here, 25 pupils) can be conceived of as two poles. To start with the former:
the variables can be used to define classes and to classify objects. They are, hence, on a
population level and define what all have in common that belong to this class. Note that
25 is, in the present example, the entire population; but from a higher point of view this
number can be seen as describing just one sample of a population that is, in principle,
unlimited – and in fact, there are other classrooms of the same school, other schools
in the same city, other cities in other countries, and other cohorts in coming years. The
direction from “class to object”, or from “population to individual” is deductive.
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Conversely, one could also start from the other pole, the individuals. To make it
concrete: A teacher could ask her 25 pupils to put all tables aside and to gather all in
the middle of the room. She could then send some to the left side of the room – Peter,
Thomas… and Rafael go here, and Sandra, Yvonne …, and Kim go there – and let the
pupils detect her organizing principle. While the teacher proceeds in a deductive manner
and applies a general rule that determines whether a given individual goes left or right,
the pupils whose task it is to detect the rule, need to make an inductive inference: They
need to ask what does the one group of individuals have in common, what does the other
have in common, and what discriminates between them? Having detected this principle,
they should be able to predict where the teacher would place a new pupil (that is, to
make an out-of-sample prediction if the door would open and pupil number 26 enters).

This little exercise, which can easily be implemented in the classroom, illustrates
the difference between deductive reasoning (from population to sample, or top-down)
and inductive reasoning (from sample to population, or bottom-up). When the teacher
uses a variable to form groups, she uses deductive reasoning (“All girls should be on
the left side – you are a girl – therefore you go left”). When she does not reveal her
criterion but asks pupils to find it out, they engage in inductive reasoning. Note that this
distinction is akin to Piaget’s (1956) distinction between intensional and extensional
reasoning about features in a given sample, which goes back to the Port Royal Logic.
Features are intensional aspects of elements of sets, like „wearing a skirt”. This is a vari-
able that characterizes an unlimited number of objects and specifies what the members
of this category (or set, or subpopulation) have in common. In contrast, if we start with
a list of the names of all children wearing a skirt in our class, then we are performing an
extensional operation rendering all children wearing skirts by listing them. The question
whether extension and intension can be treated in one framework goes back a long way:
The dichotomy can be found at the heart of what is considered the second epoch of
logic initiated by Antoine Arnauld and Pierre Nicole in their book “Logic or the Art of
Thinking” which was published in 1662. The dichotomies we just discussed (deductive
vs. inductive; top-down vs. bottom-up, intensional vs. extensional) are intimately related
to the two visual representations that we already mentioned in our introduction. Let us
consider the deductive, top-down, and intensional viewpoint first. It is directional: from
population to sample. It goes from features that characterize an, in principle, unlim-
ited (and hence, not countable) population to (countable) individuals that possess these
features. In other words, it goes from qualities (variables) to quantities (individuals).
This viewpoint focusses on sets, but not just on how many individuals are in these sets.
Structure (classes defined by features) comes first – content (individuals as carriers of
features) second. A way to visualize sets and structure is to use adequate “good-old”
Venn-diagrams. The regions or areas depicted in these diagrams specify what all have in
common who are in a specific area, but these individuals (who, together, build the “all”
in a specific area) are not individually identified.

The other viewpoint – inductive, bottom-up, and extensional – is also directional,
but now from individual to population. The starting point is constituted by “countable
individuals”, say pupils in a classroom. By inspecting them closer and by comparing
them, the question arises how they can be described, what they have in common, and,
eventually, how they can be distinguished from each other, that is, which variables could
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be used to describe and to classify them. A way to visualize countable individuals is
to use icons for representing each of them. A given icon depicts features of a given
individual, but these features (along which individuals can be distinguished) are not
displayed as a set.

Venn-diagrams and icons can be seen as the two polar representations that visualize
the starting points of the two perspectives described above. Venn-diagrams visualize sets
and icons visualize individuals. Sets as a starting point allow one to use a variable to
classify an individual, and individuals as a starting point invites one to ask how they can
be described and grouped. To illustrate, the abovementioned teacher in the class with 25
pupils starts with a variable, say gender that defines the set of boys and girls, then looks
at her pupils, one after the other, and applies this variable as a classifier to determine, in a
deductive manner, who should go to which side of the room. Conversely, those children
who find themselves on one side of the room, without having been told anything about
the organizing principle, first look at their ingroup and on those on the other side. They
hence start from the individuals and then, in a second step, consider potential variables to
test whether they could explain the assortment. Finding potential variables to scrutinize
them requires inductive reasoning, testing whether a candidate variable can explain the
observed grouping requires deductive reasoning.

For each of the two directions described above, we have seen that the natural next
step was to leave the viewpoint (as defined by one’s standpoint) and go in the direction
of the other pole. The deductive view would hence apply intensional reasoning, starting
with a classifier, and then look at a given individual in order classify it. This amounts to
placing a certain individual into one of the areas in aVenn-diagram. Content is used to fill
structure in a top-downmanner. Conversely, the inductive viewwonders how individuals,
represented by icons, could be sorted. By shifting scattered icons around and grouping
them according to defining characteristics, sets emerge in a bottom-up manner. Both
directions from the two starting points meet in the same middle. No matter whether
sets are filled with individuals, or whether individuals are identified as members of sets
and sorted accordingly, at the end of each process there is structure with content, or,
conversely, content with structure.

The discussion above can be supported by the panels displayed in Fig. 4. Panels A
and F of Fig. 4 artificially separate objects and variables. Panel A focuses on objects
but is mute about their features. Panel F focusses on features and possible relationships
among them but does not contain any countable objects. Panels A and F can thus be
seen as two poles: Objects without features and variables without objects, respectively.
We already said that in our daily perceptions, these two poles are not separated, and
it is hence only straightforward to explore the middle-ground between the two poles.
Moving from Panel A towards Panel F leads us to Panel B which adds features to the
objects. These features allow for sorting objects, which goes together with grouping
them into classes or sets. The result of such grouping is shown in Panel C. Evidently,
grouping facilitates counting. Note that sorting, classifying, and counting are elementary
statistical operations even children at a very young age are capable of.

Starting at the other pole and moving from Panel F towards Panel A leads us to
Panel E which fills the space of possibilities with objects. Compared to Panel F, Panel E
leaves the world of pure structure and reminds one that the space consists of countable
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units – even if, in contrast to the present Panel E, these units are not yet counted, and
even if these numbers may be infinite (e.g., repeated outcomes of a chance device like
a roulette wheel).

Fig. 4. Panel A: 25 distinguishable objects without any features. Panel B: The same objects, but
now described with respect to two variables, dress and hair length. Panel C: The same objects,
but now sorted according the two variables. Panel D: The same objects and assortment are now
visualized on amore abstract level. Panel E:Visualization of possibilities that arise fromcombining
two dichotomous variables, hair length and dress. For each of the possibilities, the number of
objects from a given sample is visible. Panel F: Venn-diagram visualizing the possibilities that
arise from combining two dichotomous variables.

Johnson-Laird’s mental model theory is essentially based on exactly this step from
Panel F to Panel E. When solving reasoning tasks that could be supported by Venn
diagrams (e.g., “All P are Q” and “Some Q are R”; Is it true that “some R are not-P”?),
mental model theory posits that people do not operate in an abstract variable space, but
construct individual instances, thereby searching for examples that confirmor disconfirm
the conclusion that they are asked to scrutinize. Arranging the objects of a finite sample
that facilitates counting may lead to a representation such as the one depicted in Panel
D.

Panels C and D hit the middle ground between the two poles. On the one hand (when
coming fromPanelA), description and structure are added to otherwise indistinguishable
individual objects, and on the other hand (when coming from Panel F), an abstract
structure and a space of possibilities is filled with concrete and countable cases. While
Panel C maintains the analogous representation of individual cases that were already
displayed in Panel B, Panel D inherits the level of abstraction that comes with a focus
on possible features and their combinations displayed at the right end of the Figure.

The results on icon arrays, as presented in the next section, clearly indicate that
the extensional approach fosters probabilistic intuitions of untrained people. We recall
here that it was Otto Neurath who, during the first half of the twentieth century, used
and introduced formats such as those depicted in Panel C – he called those little icons
isotypes, henceforth we will refer to arrays of such isotypes also as icon grids or icon
arrays.
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6 Icon Arrays for Risk Literacy: Following Otto Neurath

Icon arrays are a form of graphical representation that illustrates principles for the design
of risk communications, inspired by Neurath’s Isotypes (Trevena et al. 2013). An icon
array is a form of pictograph or graphical representation that uses grids of matchstick
figures, faces or other symbols to represent statistical information. An indicator of good
quality risk communication is an adherence to the principle of transparency, which
is definitely a characteristic of icon arrays: such representations define an appropriate
reference class, and risks are presented in absolute rather than relative numbers (e.g., 1 out
of 1,000 fewer women die from breast cancer with mammography screening as opposed
to communicating the relative risk reduction of 20%). Icon arrays can be designed
to communicate a variety of statistics transparently, including simple and conditional
event frequencies (e.g., conditional probabilities). In medical risk communication, for
instance, icons typically represent individuals who are affected by a risk, side-effect, or
other outcome. Icon arrays are helpful for communicating risk information because they
draw on people’s natural tendency to count (Dehaene 1996), while also facilitating the
visual comparison of proportions. For example, to represent a 3% risk of infection, icon
arrays represent the proportion of individuals who end up with an infection, for instance,
an icon array may just depict 100 icons, of which 3 are marked as „special”. The one-
to-one match between individual and icon has been proposed to invite identification
with the individuals represented in the graphic to a greater extent than other graphical
formats. Icon arrays are suitable for facilitating the understanding of risk information due
to two characteristics: First, they arrange the icons systematically (Fig. 4C) rather than
randomly (as in Fig. 4B). Second, and relatedly, they visualize a part-whole relationship.

Institutions devoted to fostering the intuitions of “responsible patients” like theHard-
ing Center in Berlin are interested in propagating basics of risk literacy. Another institu-
tion, theAOK,which is one of themain insurance companies inGermany, communicates
information to patients by means of fact boxes, as illustrated in Fig. 5.

What does the patient perceive here? The array on the left shows icons for 1,000
women who do not perform screening. Five of them die of breast cancer. The array
on the right side shows 1,000 women who undergo screening regularly. Four of these
women die of breast cancer, implying that the absolute risk reduction through regular
screening is 1 per 1,000 (the reduction from 5 per 1,000 to 4 per 1,000 is 1 per 1,000).
The so-called relative risk reduction in the breast cancer situation is 20% for women
performing screening (1 per 1,000 whose lives could be saved compared to 5 per 1,000
who would lose their lives without screening; see Sect. 10 for dynamical representations
of risk changes).



396 U. Hoffrage et al.

Fig. 5. A fact box designed by the Harding Center and used by the largest health insurance
company in Germany, the AOK, for communicating information on the risk reduction caused by
regular screening.

7 Beyond Neurath: Dynamic Icon Arrays

Even though icon arrays are already very helpful in facilitating understanding (Garcia-
Retamero & Hoffrage 2013), there is still room for improvement: one can make them
dynamic. In a dynamic webpage designed by Tim Erickson (https://www.eeps.com/pro
jects/wwg/wwg-en.html), icon arrays can be sorted and organized by a simple click on a
button (see, for instance, the HIV example, which is also briefly described below), so that
relevant features can be quantified at a glance. Sorting is the first elementary statistical
action we perform, sometimes just mentally (Martignon & Hoffrage 2019). Dynamic
displays can thus become particularly useful for communicating about co-occurring or
conditional events, which is relevant for understanding the meaning of features in the
medical domain. For this purpose, sorting icon arrays becomes essential, as we illustrate
with the example of 100 people who were tested as to whether they are HIV positive
(Fig. 6).

https://www.eeps.com/projects/wwg/wwg-en.html
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“no disease and tested negative”

 “no disease but tested positive” 

“disease is present but tested negative”

“disease is present and test is positive”

Fig. 6. This icon array, unsorted (left) and sorted (right), represents 100 people, diseased or not
diseased, who are tested as to whether or not they are HIV positive.

8 Constructing Trees and Double Trees Starting from Icon Arrays

The validity or predictive value of a feature (e.g., a positive test, or breathing problems)
can be computed by means of Bayes’ Theorem. Consider, a physician receives new
evidence (E) in form of a positive result. To infer whether a certain disease (D) is present
or not, the physician should use her prior probability that the disease (D) is present, aswell
as the two likelihoods of a positive test result (if the disease is present and if the disease is
not present, respectively) to calculate the so-called posterior probability that the disease
is indeed present given the evidence, i.e., the positive test result. The corresponding
formula is calledBayes’Rule, andwasfirst formulatedby themathematician, philosopher
and minister Thomas Bayes in the eighteenth century. Using Bayes’ rule, the probability
that the disease (D) is present once a new piece of evidence becomes known is calculated
as follows:

P(D|E) = P(E|D)P(D)
P(E|D)P(D)+ P(E|D)P(D)

Formula 1: Bayes’ rule
The formula shows how to solve this evidential reasoning problem: In the medical

setting, P(D|E) is the probability that the patient has the disease given that they tested
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positive on the test. People are notoriously bad atmanipulating probabilities, as a plethora
of empirical studies have shown (Eddy 1982; Gigerenzer & Hoffrage 1995).

The tree in Fig. 7 represents information about disease and test in a causal, sequential
and hierarchical setting by means of a tree: The presence of the disease, represented by
D+, is the label on the left node or leaf of the tree in the first level, while D- represents its
absence. In this particular case the number 0.01 on the branch between the initial node
and the node labeled with D+ in Fig. 7 represents the probability of the disease being
present, also called its base rate.

Fig. 7. A tree representing the binary categories “Disease” and “Test result” (D+ means that the
disease is present, while D- denotes absence of the disease; T+ and T- denote a positive and
negative test result, respectively).

Gigerenzer and Hoffrage (1995) have proposed a didactical simplification or reduc-
tion of the initial probabilistic treatment, which deserves the name of a heuristic: the
systematic use of so-called natural frequencies. They argued that the kind of reasoning
needed to make assessments on the diagnosticity of a test or symptom (or, in gen-
eral, of a feature characterizing a category) can be facilitated by changing the format
of information representation. In the same article (Gigerenzer & Hoffrage 1995) have
empirically shown that diagnostic assessments based on new evidence could be sub-
stantially improved when the statistical information was provided by means of natural
frequencies compared to representation in terms of probabilities.

9 Dynamic Trees of Natural Frequencies

Natural frequencies are the frequencies that naturally result if a sample is taken from a
population. In case of one hypothesis or cause, like a disease, and of a piece of binary
evidence, like the positive or negative result of a test, natural frequencies are the result
of counting members of a given sample in each category. Translating probabilities into
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natural frequencies is always possible and becomes an ecologically rational heuris-
tic that facilitates reasoning. In medicine, physicians’ diagnostic inferences have been
shown to improve considerably when natural frequencies are used instead of proba-
bilities (Gigerenzer 1996; Hoffrage, Lindsey, Hertwig, & Gigerenzer 2000). Figure 8
illustrates both approaches to the causal tree: one by means of probabilities and one by
means of natural frequencies.

1000

99010

8 2 89199

0.01 0.99

0.8 0.2 0.1 0.9

D+ D-

D+ D-

T+ T- T+ T-

Fig. 8. Two trees, one labeled with probabilities, the other labeled with natural frequencies,
representing the knowledge of the physician on a certain patient concerning breast cancer.

Trees with natural frequencies as labels can be constructed in the causal direction,
i.e., from cause to evidence, as in the Figures above. The beneficial effect of natural
frequencies could also be used as a basis to design tutorials that teach students to better
cope with probability representations. Instead of teaching them how to plug probabil-
ities into Bayes’ rule, they have been taught how to translate these probabilities into
natural frequencies and subsequently derive the solution for there. In an online-tutorial,
Sedlmeier&Gigerenzer 2001) could show that such frequency-tree representationswere
superior to probability trainings (long-term performance of over 90% compared to 20%,
respectively). Likewise, representation training also proved to be superior over rule train-
ing in a classical classroom setting with medical students, using medical problems as
content (Kurzenhäuser & Hoffrage 2002).

Natural frequencies go hand in hand with icon arrays as illustrated by the dynamic
web page the reader can reach by means of the QR Code below (https://www.eeps.com/
projects/wwg/wwg-en.html)

https://www.eeps.com/projects/wwg/wwg-en.html
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This page can help the public to become “informed” and “competent” when dealing
both with the sensitivity or specificity of a test and with its positive/negative predictive
value.

These resources are designed to support instruction of children and adults to become
informed and competent when

• dealing both with the sensitivity or specificity of a test,
• dealingwith positive/negative predictive values of tests and dependence on base rates,
• understanding base rates,
• understanding relative and absolute risks, and
• understanding the subtleties of features’ conjunctions.

To summarise, the resource is designed to make the teaching and training of risk
literacy easy and transparent, by offering multiple complementary and interactive per-
spectives on the interplay between key parameters. Such interactive displays for adults
have been introduced, for instance, by Garcia-Retamero, Okan, & Cokely (2012). Click-
ing on any of the three sections leads to pages where a variety of contexts are presented.
For instance, in The explanatory power of features one can choose between contexts –
one is Pets and bells, which is quite appropriate for children of fourth class – and see a
display like the following (Fig. 9):

Fig. 9. Representations of 10 pets, cats and dogs, random and sorted.
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The natural question is: “If a pet is wearing a bell, is it likely to be a cat?” The task is
to judge the validity, or predictive value of this feature for the category Cats. The button
“group bells together”, at the left side under the picture, sorts the pets, so that it becomes
easy to visualize pets wearing a bell.

The role of base rates is illustrated through the use of the sliders placed under the
array. Maintaining the total number of pets equal to 10 one can enhance the base rate of
“cats”, while keeping the sensitivity of “bell” constant, as illustrated in Fig. 10.

Fig. 10. In this display the number of pets remains 10 but the base rate of cats is now “6 out of
10”

Wearing a bell now becomes moderately predictive for the category “cats”. The next
instructional step is to construct trees. A button at the top left of the grid in Fig. 10 leads
to the corresponding double tree, illustrated in Fig. 11.

The double tree in Fig. 11 exhibits two inference directions: one is causal the other
is diagnostic. The double tree is a simple and transparent way of approaching Bayesian
reasoning. Studies by Wassner (2004) clearly demonstrated the effectiveness of such
double trees for fostering successful Bayesian reasoning in the classroom. He worked
with ninth grade students in Germany.



402 U. Hoffrage et al.

Fig. 11. The double tree from the icon array in Fig. 10.

10 Other Elements of Risk Literacy by Means of Dynamical
Representations

TheWebpage “Worth the risk?”, also illustrates the subtleties connected with risk reduc-
tions and increases in transparent ways that are easy to grasp. Figure 12 shows 20 boys
who have had a bike accident, ten of which were wearing a helmet. The faces with a pad
and a black eye represent boys with severe injury caused by the bike accident.

Fig. 12. Icon array exhibiting 20 boys having a bike accident, ten of them wearing helmets

Simply sorting the icon array by grouping helmets together allows an easy grasp of
the risk reduction provided by helmets.

While all the dynamical resources described so far are devoted to the second com-
ponent of Risk Literacy, as described in Fig. 3, the third author of this paper has also
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designed and produced plugins for the third and fourth component. Opening https://
codap.xyz/ the reader finds, among many plugins, also ARBOR. This plugin is designed
for the construction of trees for classification and decision, based on data concerning
features for classification. Decision trees constructed by means of clever algorithms
which can be used in complex medical situations exist and have been developed by
eminent statisticians, such as CART (Breiman 1996); implementations of those algo-
rithms are available in common software platforms such as R (Erickson & Engel 2023).
The trees proposed in ARBOR are utterly simple and intuitive and young students can
easily understand them. The basic idea is that the display starts with an initial node that
specifies a response variable—the binary criterion or category the tree is designed to
predict. Then the user can drag any attribute to any node in order to make (or replace) a
branch based on that attribute. Finally, to make a prediction (in the case of a classifica-
tion tree), the user has to add a “diagnosis leaf” to the end of every branch to indicate
what conclusion you should come to if a case arrives at that branch. Let’s see what that
looks like in practice using a famous dataset about heart patients from Green and Mehr
(1999). It has 89 cases with four attributes: MI (whether the patient had a myocardial
infarction, a heart attack); pain (whether the patient complained of chest pain); STelev
(whether the “ST” segment on an EKG was elevated); and oneOf (whether the patient
showed any of four other symptoms). First, the user must set up a response variable.
This involves deciding which attribute the tree will predict, and which value the tree will
orient towards. In our situation, we are trying to predict whether the patient will have a
heart attack ( MI) using the other three attributes.We also need to orient our tree: will we
look at the proportion of patients that do get a heart attack ( MI = yes) or the proportion
that do not ( MI = no)? In Arbor, the response variable and its orientation appear in the
“root” node of the tree, represented by a box as shown in Fig. 13.

Fig. 13. The positive value of the criterion (MI = Infarction)

Growing the Tree. Nowwewant to “grow” our tree.Wewill do so by dragging attributes
( oneOf, STelev, or pain) from the palette and dropping them on a node. CODAP’s
built-in graphing helps us explore the data before constructing a tree. In the case of this
question, we can make a graph that shows how the value of MI is associated with pain.
The figure shows that, indeed, a patient is more likely to have an MI if they complain of
chest pain—but to a student, the relationship probably does not look as they expected.
Even with chest pain, a large majority of patients do not get a heart attack (Fig. 14).

The plugin allows then to construct individual trees for each cue and then compose
trees with three cues like the one shown in Fig. 15.

https://codap.xyz/
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Fig. 14. User-friendly display created by the plugin for the statistics of three cues

Fig. 15. This tree has been constructed: One can drag and place cues one under the other and
construct trees.

This tree could be constructed also with other orderings and we would be able to
compare their performances and choose the „best” one. The plugin is thus a facilitating
tool for doing the necessary steps for good classification in a simple user-friendly way.
There are many other useful plugins in the webpage https://codap.xyz. Another plugin
is, for instance, Lotti, which is specifically constructed for component 4 of risk literacy.
Here the plugin presents the user with „doors” and alternatives with different outcomes.
The plugin provides the typical „lottery” situation, with fixed gain versus situations of
risk versus benefits (Fig. 16).

Concluding, we simply stress the benefits of the dynamical, interactive tools for
classifications based on dynamic, extensional representations of information, fostering
intuitions on risk and provide tools of risk literacy.

https://codap.xyz
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Fig. 16. A game for acquiring an understanding of risk through clicking either on plan A, with a
fixed allowance, or B with a varying allowance, with larger expected value.
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